user-guide.md 11/3/2025

RetryTool - User Guide

Table of Contents

. Overview

. Prerequisites & Installation

. Initial Setup & Configuration
. Permission Management

. Configuration Settings

. Testing & Validation

. Sandbox Refresh Procedures

. Package Uninstallation

© 0 N O o0 b WO N =

. Troubleshooting

Overview

RetryTool is a Salesforce managed package that provides automatic retry functionality for handling transient
errors like across all Salesforce layers (LWC, Aura, Flow, Apex). This guide walks
you through the complete setup, configuration, and maintenance procedures.

What RetryTool Solves

Row-locking conflicts when multiple processes try to update the same record

Transient errors in API callouts, timeouts, and system overload scenarios

Inconsistent error handling across different Salesforce contexts

Manual retry attempts that waste user time and reduce productivity

Prerequisites & Installation
System Requirements
1. Lightning Web Security (LWS) - REQUIRED for LWC integration

o Navigate to Setup - Session Settings - Lightning Web Security
o Ensure "Use Lightning Web Security for Lightning web components” is enabled

2. Edition: All editions supported (Developer, Professional, Enterprise, Unlimited)
Installation Steps
AppExchange Installation

1. Access AppExchange

o Go to Salesforce AppExchange
o Search for "RetryTool"

1/17

user-guide.md 11/3/2025

o Click "Get It Now"
2. Choose Installation Link

o Production: Install Latest Version
o Sandbox: Install Latest Version

3. Installation Options

o Recommended: "Install for All Users"
o Alternative: "Install for Admins Only" (requires manual permission assignment later)

Post-Installation Verification
After installation, verify these components were created automatically:
1. Default Setting Record: Navigate to RetryTool Settings tab

o Record Name: "RetryTool_Default"

o Developer Name: "RetryTool_Default"
o Max Retry: 5

o Waiting Time: 3000ms

o Log Retention: 90 days

2. Scheduled Job: Navigate to Setup - Scheduled Jobs

o Job Name: "RetryTool Log Cleanup Schedule"
o Scheduled: Last day of each month at 11:00 PM GMT

3. Permission Sets: Setup - Permission Sets

Initial Setup & Configuration
Step 1: Access RetryTool App

1. Click the App Launcher (9 dots icon)
2. Search for "RetryTool"
3. Click the RetryTool app to open it

You'll see three main tabs:

¢ Retry Settings: Configuration management
e Retry Logs: Operation monitoring
¢ RetryTool Welcome: Package overview

Step 2: Verify Default Configuration

Navigate to Retry Settings tab and open the RetryTool_Default record:
2/17

https://login.salesforce.com/packaging/installPackage.apexp?p0=04tQy000000Bq9lIAC
https://test.salesforce.com/packaging/installPackage.apexp?p0=04tQy000000Bq9lIAC

user-guide.md 11/3/2025

Basic Settings:

Developer Name: RetryTool_Default (unique identifier)

Max Retry: 5 (number of retry attempts)

Waiting Time: 3000 (milliseconds between retries)

Log Retention In Days: 90 (automatic cleanup period)
Advanced Settings:

o Extra Retryable Errors: Custom error patterns (pipe-separated)
e Setting Link: Formula field for easy navigation

Permission Management
Critical Requirement
A RetryTool WILL NOT FUNCTION without proper permission assignment

A Production License Requirement: In Production environments, RetryTool requires a valid package
license. Without it, no retries will occur - all retryable errors like will be treated as
non-retryable.

Permission Set Overview

Permission Set Use Case Access Level

L Full CRUD on settings/logs, all Apex
System administrators
classes

End users needing retry .)
]) Execute retry operations, read settings
functionality

) Read-only access to logs and debug
Troubleshooting support s
info

Assignment Methods
Method 1: Setup Ul (Recommended)

1. Navigate to Setup - Users

2. Click on user name

3. Click "Permission Set Assignments"

4. Click "Edit Assignments"

5. Add appropriate permission set (for most users)
6. Save

Method 2: Apex Code (Bulk Assignment)

3/17

user-guide.md

// Bulk assign RetryTool_User to active users

11/3/2025

// Note: For large orgs, consider adding LIMIT or WHERE conditions to

reduce query size

List<User> activeUsers = [SELECT Id FROM User WHERE IsActive
PermissionSet ps = [SELECT Id FROM PermissionSet WHERE Name

'RetryTool_User' LIMIT 1];

List<PermissionSetAssignment> assignments = new

List<PermissionSetAssignment>();
for (User u : activeUsers) {

assignments.add(new PermissionSetAssignment (

Assigneeld = u.Id,
PermissionSetId = ps.Id
g
b

insert assignments;

Method 3: Data Loader (Large Organizations)

1. Export user IDs who need access
2. Query PermissionSet ID:

3. Create CSV with columns: Assigneeld, PermissionSetld

4. Use Data Loader to insert PermissionSetAssignment records

= truel;

Configuration Settings
Basic Settings Fields

¢ Developer Name: Unique identifier for this configuration
e Max Retry: Number of retry attempts (1-5)
¢ Waiting Time: Milliseconds between retries

¢ Log Retention In Days: How long to keep log records (1-365)

Default Settings Fallback

A Important: If you use a setting name that doesn't exist, RetryTool automatically applies default values:

e Max Retry: 5
e Waiting Time: 3000ms
¢ Log Retention: 90 days

When this happens:

o After sandbox refresh if settings records are not restored
¢ When using wrong setting names in code
¢ During testing with non-existent settings

Extra Retryable Errors Field
4/17

user-guide.md

Add custom error keywords (pipe-separated) to extend retry behavior beyond the built-in patterns.
Format:

Example Keywords (for illustration only):

Built-in Patterns (always active):

e Multi-language record locking messages

11/3/2025

Testing & Validation
Built-in Testing Tools

RetryTool includes comprehensive testing components accessible from any Retry Setting record:
1. LWC Testing Tab

Purpose: Test Lightning Web Component retry integration Test Scenarios:

e Persistent Retry Error (continuous failures)
e Non-Persistent Retry Error (intermittent failures)
e Non-Retry Error (validation of non-retryable errors)

Testing Steps:

1. Open any Retry Setting record

2. Click LWC Tab

3. Select error type from dropdown
4. Click Test button

5. Monitor retry behavior and logging

Custom Handlers (optional - you can do whatever you want in these functions):

retryTool.handleErrorRetry(this, error, callback, settingName, {
onRetry: () = A
. log(" Retry ${currentRetry} of ${maxRetry});
// You can do whatever you want here - update UI, show toasts, call
methods, etc.
H
onMaxRetriesExceeded: => {
.error("Maximum attempts reached");
// You can do whatever you want here - show error messages, enable

5/17

user-guide.md 11/3/2025

buttons, etc.
}
onRetryNotAllowed: () => {
console.error("Cannot retry this error");
// You can do whatever you want here — handle non-retryable errors,
navigate, etc.
}
processName: "YourComponent",
processAction: "yourMethod"

});

A Important: Replace with the exact Developer Name from your RetryTool_Setting__c
records. If the setting name doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime:
3000ms).

2. Aura Testing Tab

Purpose: Test Aura Component retry integration Similar scenarios as LWC testing Legacy support for
existing Aura implementations

Custom Handlers (optional - you can do whatever you want in these functions):

helper.retryToolHandleErrorRetry(cmp, error, callback, settingName, {
onRetry: function (currentRetry, maxRetry) {
console.log("Retry " + currentRetry + " of " + maxRetry);
// You can do whatever you want here - update UI, show toasts, call
methods, etc.
}
onMaxRetriesExceeded: function () {
console.error("Maximum attempts reached");
// You can do whatever you want here — show error messages, enable
buttons, etc.
}
onRetryNotAllowed: function () {
console.error("Cannot retry this error");
// You can do whatever you want here - handle non-retryable errors,
navigate, etc.
}
processName: "YourAuraComponent",
processAction: "yourFunction"

});

A Important: Replace with the exact Developer Name from your RetryTool_Setting__c
records. If the setting name doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime:
3000ms).

3. Screen Flow Testing Tab

6/17

user-guide.md 11/3/2025

Purpose: Test Flow DML fault path retry Prerequisites: Requires SObject Aggregator helper class - must
be customized for your specific SObjects and include test class (examples provided below)

Custom Error Screens (optional - you can customize error handling as you wish):

Use OverrideErrorScreen parameter to bypass default error messages

Create your own error screen with custom messages, buttons, and navigation

Add decision elements after RetryTool SubFlow to handle success/failure

You can do whatever you want - show custom messages, redirect users, log errors, etc.
4. Auto-Launched Flow Testing Tab

Purpose: Test background Flow retry operations Use Case: Batch processing, scheduled flows, platform
event handlers

Backend/Async Testing Examples:
Option 1: Flow DML Operation Action

e Drag "Retry Tool DML Operation" action into auto-launched flow
e Configure: DmIType (INSERT/UPDATE/DELETE), Records collection, RetryToolSetting name
e Test with bulk records for async retry behavior

A Important: Use the exact Developer Name from your RetryTool_Setting__c records for the
RetryToolSetting parameter.

Option 2: Direct Apex Integration

// Basic backend retry example
RetryToolDmlOperation.getInstance(records, 'BackendSetting').doUpdate();

// With process context for logging
RetryToolDmlOperation.getInstance(records, 'BatchProcessor')
.setProcessName('DataMigrationBatch"')
.setProcessAction('updateRecords"')
.doInsert();

A Important: Use the exact Developer Name from your RetryTool_Setting__c records. If the setting name
doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime: 3000ms).

Async Test Scenarios:

e Batch Jobs: Test with 200+ records to trigger async processing
¢ Platform Events: Test retry behavior in event subscribers
e Scheduled Operations: Test retry in scheduled apex or flows

Creating Test Scenarios

Validation Rule Testing Method

7117

user-guide.md 11/3/2025

Create temporary validation rule for testing:

1. Navigate to Object Manager - [Your Object] - Validation Rules

2. Create New Rule:
o Rule Name: RetryTool_Test
o Error Condition Formula: (Always run on update)
o Error Message: (or your custom error pattern)

3. Test retry functionality

4. Deactivate rule when testing complete

Custom Error Testing

Test custom error patterns:

1. Add custom pattern to Extra Retryable Errors:
2. Create validation rule with error message:

3. Test retry behavior

4. Verify logging in Retry Logs tab

SObject Aggregator Helper Class

For Screen Flow integration, create this helper class customized for your SObjects:

Helper Class Example

public inherited sharing class RtSObjectAggregatorInvocable {
@InvocableMethod (
label="'RetryTool - SObjectAggregatorInvocable'
description="'Invocable Method to aggregate sobjects for retry
operations’
category='RetryTool'
)
public static List<OutputParam> doAggregation(List<InputParam> inputs) {
List<OutputParam> results = new List<OutputParam>();

for (InputParam input : inputs) {
OutputParam output = new OutputParam();
List<SObject> records = new List<SObject>();

// Add your specific SObject types here

if (input.account !'= null)
records.add(input.account);

if (input.accountList !'= null)
records.addAll(input.accountList);

if (input.contact != null)
records.add(input.contact);

if (input.contactList !'= null)
records.addAll(input.contactList);

// Add more SObject types as needed for your org

output.sobjectAggregation = JSON.serialize(records);
8/17

user-guide.md 11/3/2025

results.add(output);
}

return results;

}

public class InputParam {
@InvocableVariable
public Account account;
@InvocableVariable
public List<Account> accountList;
@InvocableVariable
public Contact contact;
@InvocableVariable
public List<Contact> contactList;
// Add more SObject types as needed for your org
b

public class OutputParam {
@InvocableVariable
public String sobjectAggregation;
b
b

Test Class Code Snippet

@IsTest
public class RtSObjectAggregatorInvocableTest {
@IsTest
static void testDoAggregation() {
// Test data setup
Account testAccount = new Account(Name = 'Test Account');
insert testAccount;

Contact testContact new Contact(
FirstName = 'Test',
LastName = 'Contact’,
AccountId = testAccount.Id

);

insert testContact;

// Prepare input parameters

RtSObjectAggregatorInvocable.InputParam input = new
RtSObjectAggregatorInvocable.InputParam();

input.account = testAccount;

input.contact = testContact;

input.accountlList = new List<Account>{ testAccount };

input.contactlList = new List<Contact>{ testContact };

// Execute the invocable method
Test.startTest();

9/17

user-guide.md 11/3/2025

List<RtSObjectAggregatorInvocable.OutputParam> results =
RtSObjectAggregatorInvocable.doAggregation(
new List<RtSObjectAggregatorInvocable.InputParam>{ input }
};
Test.stopTest();

// Verify results
System.assertEquals(1l, results.size(), 'Should return one result');
System.assertNotEquals(
nultl,
results[0].sobjectAggregation,
'Should have JSON output'
);

// Validate JSON serialization
List<SObject> deserializedRecords = (List<SObject>) JSON.deserialize(
results[0].sobjectAggregation,
List<SObject>.class
)i
System.assertEquals(
4,
deserializedRecords.size(),
'Should contain all 4 records'
);

@IsTest
static void testEmptyInput() {
// Test with empty input
RtSObjectAggregatorInvocable.InputParam input = new
RtSObjectAggregatorInvocable.InputParam();

Test.startTest();
List<RtSObjectAggregatorInvocable.OutputParam> results =
RtSObjectAggregatorInvocable.doAggregation(
new List<RtSObjectAggregatorInvocable.InputParam>{ input }
);
Test.stopTest();

// Verify empty result handling
System.assertEquals(1l, results.size(), 'Should return one result');
System.assertNotEquals (
nultl,
results[0].sobjectAggregation,
'Should have JSON output'
)k

Important Notes:

e Modify the class to include your organization's specific SObject types

10/17

user-guide.md 11/3/2025

e Update the aggregation logic to handle your custom objects
e Ensure test class covers all your SObject types for proper deployment coverage

Sandbox Refresh Procedures
Problem Statement

When refreshing a sandbox from production:

RetryTool package remains installed
Configuration data (records) is NOT automatically refreshed

Log data (records) is NOT carried over

Permission assignments may need to be recreated

A Critical: If settings records are not restored, RetryTool will use default values (MaxRetry: 5,
WaitingTime: 3000ms, LogRetention: 90 days) for all operations until settings are recreated.

Post-Refresh Setup Checklist

Step 1: Verify Package Installation

1. Navigate to Setup - Installed Packages
2. Verify RetryTool package is listed as installed
3. Check package version matches expected version

Step 2: Recreate Configuration Data

Option A: Manual Recreation
1. Document settings from Production:

o Navigate to RetryTool Settings tab in Production
o Open each setting record and note down configuration values:
= Developer Name
= Max Retry
» Waiting Time
m Log Retention In Days
m Extra Retryable Errors

2. Create settings in Sandbox:

o Navigate to RetryTool Settings tab in Sandbox
o Create new records matching production configuration
o Verify Developer Names match exactly

Option B: Data Loader Method
1. Export from Production:

o Use Data Loader to export records

11717

user-guide.md 11/3/2025

o Include fields: , .)

2. Import to Sandbox:

o Use Data Loader to import the exported records to Sandbox
o Verify all records imported successfully

Step 3: Verify Scheduled Jobs

Check if log cleanup job is scheduled:

1. Navigate to Setup - Scheduled Jobs
2. Look for: "RetryTool Log Cleanup Schedule"
3. If missing, run post-install script manually:

// Execute in Developer Console
RetryToolLogCleanupSchedule.scheduleBatch(

'RetryTool Log Cleanup Schedule',

'0 @ 23 L x ?' // Default cron: 11 PM on last day of month
};

Step 4: Reassign Permissions

Sandbox user permissions may not include RetryTool access:

1. Identify users who need RetryTool access
2. Assign permission sets using Setup Ul or bulk methods (see Permission Management section)
3. Test functionality with assigned users

Step 5: Validation Testing

Run comprehensive testing to ensure functionality:

1. Use built-in testers (LWC, Aura, Flow tabs)
2. Verify error detection and retry behavior
3. Check logging functionality

4. Confirm settings are working correctly

Package Uninstallation
Pre-Uninstallation Requirements

A CRITICAL: Remove all RetryTool references before uninstalling the package to avoid metadata
dependency errors.

Step 1: Identify Dependencies

12/17

user-guide.md

Search for RetryTool references in your org using Setup Ul:
1. Apex Classes:

o Navigate to Setup - Apex Classes
o Use Global Search to find "RetryTool" references
o Review each class that contains RetryTool usage

2. Lightning Components:

o Navigate to Setup - Lightning Components
o Search for components containing "czywks_rt" namespace references
o Check both LWC and Aura components

3. Flows:

o Navigate to Setup - Flows
o Search for flows containing "RetryTool" actions or elements
o Review Flow definitions for RetryTool invocable actions

Step 2: Remove Code Dependencies

Lightning Web Components

Remove RetryTool imports and usage:

// REMOVE these lines:
import { retryTool } from "czywks_rt/retryTool";

// REMOVE retry handling code:
retryTool.handleErrorRetry(

this, error, callback, settingName, processContext
IE

// REPLACE with standard error handling:
.catch(=> {
.error('Error:', error);
// Your standard error handling

)

Aura Components

Remove RetryTool interface and component:

<!—— REMOVE these lines: —-—>
implements="czywks_rt:RetryToolAura"
<czywks_rt:retryTool aura:id="retryToolCmpId" />

13/17

11/3/2025

user-guide.md

// REMOVE helper method calls:
helper.retryToolHandleErrorRetry(cmp, error, callback, settingName,
context);

// REPLACE with standard error handling

Flows

Remove RetryTool Invocable Actions:

1. Open each Flow that uses RetryTool
2. Remove these elements:
o "RetryTool DML Operation" actions
o "RetryTool SObject Aggregator" actions
o Fault path connections to RetryTool subflows
3. Replace with standard DML operations
4. Save and activate updated flows

Apex Code

Remove RetryTool class usage:

// REMOVE these lines:
RetryToolDmlOperation.getInstance(records, 'SettingName').doInsert();

// REPLACE with standard DML:
try {

insert records;
} catch (DmlException e) {

// Your standard error handling
throw e;

Step 3: Remove Custom Helper Classes
If you created custom helper classes (like SObject Aggregator):

1. Identify helper classes created for RetryTool integration (including test classes)
2. Remove or comment out RetryTool-specific functionality

3. Update for your specific SObject DML operations or remove entirely

4. Deploy changes to remove dependencies

Step 4: Validate Removal
Test your org to ensure all functionality works without RetryTool:

1. Run existing unit tests

14/17

11/3/2025

user-guide.md 11/3/2025

2. Test critical business processes
3. Verify no compilation errors
4. Check Flow execution

Step 5: Uninstall Package

Only after removing all dependencies:

1. Navigate to Setup - Installed Packages
2. Find RetryTool package

3. Click "Uninstall"

4. Follow uninstallation wizard

5. Confirm removal

Step 6: Post-Uninstallation Cleanup

After successful uninstallation:

1. Remove permission set assignments (they'll be invalid)
2. Clean up any remaining references in documentation
3. Update deployment scripts if they referenced RetryTool
4. Notify team members of the removal

Troubleshooting

Common Issues
Issue: "RetryTool functionality not working"

Cause: License expiration in Production environment Solution:

¢ Production Only: Check package license expiration - without valid license, all errors are treated as
non-retryable
e Verify license is current and not expired

Issue: "Permission denied" or "Access not allowed"

Cause: Permission sets not assigned Solution: Verify user has or
permission set assigned

Issue: "Lightning Web Security error"

Cause: LWS not enabled for LWC integration Solution: Enable LWS in Setup - Session Settings -
Lightning Web Security

Issue: "Settings not found" or "Using default values"

Cause: Developer Name mismatch, missing settings, or wrong setting name in code Solution:

o Verify setting exists with exact Developer Name used in code
15/17

user-guide.md 11/3/2025

¢ Check if settings were restored after sandbox refresh
e Remember: RetryTool uses default values (MaxRetry: 5, WaitingTime: 3000ms) when settings don't
exist

Issue: "Logs not being created"

Cause: Platform Event trigger not working or permission issues Solution: Check trigger is active and user
has permission to publish platform events

Issue: "Scheduled job not running”

Cause: Log cleanup job not scheduled or failed Solution: Check Scheduled Jobs and reschedule if
necessary

Issue: "Retries not working in Production but work in Sandbox"

Cause: Invalid package license in Production environment
Solution: Ensure valid RetryTool license in Production - without valid license, RetryTool will NOT retry
and will treat all and other retryable errors as non-retryable

Debug Mode

Enable debug mode for troubleshooting:

1. Assign permission set

2. Check Debug Logs for RetryTool namespace activity
3. Monitor Platform Events for logging issues

4. Review Scheduled Job History for cleanup issues

Support Channels

Internal Documentation: RetryTool App - Welcome tab

Built-in Testing: Use testing tabs for validation

Salesforce Logs: Monitor debug logs for detailed error messages

Package Documentation: Review technical documentation in docs/ folder

Appendix

Default Settings Reference

{
"DeveloperName__c": "RetryTool_Default",
"MaxRetry__c": 5,
"WaitingTime__c":)
"LogRetentionInDays__c": C
"ExtraRetryableErrors__c":

b

16/17

user-guide.md

Permission Sets Summary

11/3/2025

Object
Full CRUD Read Read
Full CRUD Create/Read Read
Create/Read Create/Read Read

Apex Classes All classes Essential classes Debug classes

Cron Expression Reference

Default log cleanup schedule:

e 0023:11:00 PM

e L: Last day of month
e *: Every month

e ?: Any day of week

Custom schedule examples:

e Daily at 2 AM:
e Weekly Sunday 3 AM:
e First day of month 1 AM:

17/17

