
user-guide.md 11/3/2025

1 / 17

RetryTool - User Guide

Table of Contents

�. Overview

�. Prerequisites & Installation

�. Initial Setup & Configuration

�. Permission Management

�. Configuration Settings

�. Testing & Validation

�. Sandbox Refresh Procedures

�. Package Uninstallation

�. Troubleshooting

Overview

RetryTool is a Salesforce managed package that provides automatic retry functionality for handling transient

errors like UNABLE_TO_LOCK_ROW across all Salesforce layers (LWC, Aura, Flow, Apex). This guide walks

you through the complete setup, configuration, and maintenance procedures.

What RetryTool Solves

Row-locking conflicts when multiple processes try to update the same record

Transient errors in API callouts, timeouts, and system overload scenarios

Inconsistent error handling across different Salesforce contexts

Manual retry attempts that waste user time and reduce productivity

Prerequisites & Installation

System Requirements

�. Lightning Web Security (LWS) - REQUIRED for LWC integration

Navigate to Setup → Session Settings → Lightning Web Security

Ensure "Use Lightning Web Security for Lightning web components" is enabled

�. Edition: All editions supported (Developer, Professional, Enterprise, Unlimited)

Installation Steps

AppExchange Installation

�. Access AppExchange

Go to Salesforce AppExchange

Search for "RetryTool"

user-guide.md 11/3/2025

2 / 17

Click "Get It Now"

�. Choose Installation Link

Production: Install Latest Version

Sandbox: Install Latest Version

�. Installation Options

Recommended: "Install for All Users"

Alternative: "Install for Admins Only" (requires manual permission assignment later)

Post-Installation Verification

After installation, verify these components were created automatically:

�. Default Setting Record: Navigate to RetryTool Settings tab

Record Name: "RetryTool_Default"

Developer Name: "RetryTool_Default"

Max Retry: 5

Waiting Time: 3000ms

Log Retention: 90 days

�. Scheduled Job: Navigate to Setup → Scheduled Jobs

Job Name: "RetryTool Log Cleanup Schedule"

Scheduled: Last day of each month at 11�00 PM GMT

�. Permission Sets: Setup → Permission Sets

RetryTool_Admin
RetryTool_User
RetryTool_Debugger

Initial Setup & Configuration

Step 1: Access RetryTool App

�. Click the App Launcher (9 dots icon)

�. Search for "RetryTool"

�. Click the RetryTool app to open it

You'll see three main tabs:

Retry Settings: Configuration management

Retry Logs: Operation monitoring

RetryTool Welcome: Package overview

Step 2: Verify Default Configuration

Navigate to Retry Settings tab and open the RetryTool_Default record:

https://login.salesforce.com/packaging/installPackage.apexp?p0=04tQy000000Bq9lIAC
https://test.salesforce.com/packaging/installPackage.apexp?p0=04tQy000000Bq9lIAC

user-guide.md 11/3/2025

3 / 17

Basic Settings:

Developer Name: RetryTool_Default (unique identifier)

Max Retry: 5 (number of retry attempts)

Waiting Time: 3000 (milliseconds between retries)

Log Retention In Days: 90 (automatic cleanup period)

Advanced Settings:

Extra Retryable Errors: Custom error patterns (pipe-separated)

Setting Link: Formula field for easy navigation

Permission Management

Critical Requirement

⚠ RetryTool WILL NOT FUNCTION without proper permission assignment

⚠ Production License Requirement: In Production environments, RetryTool requires a valid package

license. Without it, no retries will occur - all retryable errors like UNABLE_TO_LOCK_ROW will be treated as

non-retryable.

Permission Set Overview

Permission Set Use Case Access Level

RetryTool_Admin System administrators
Full CRUD on settings/logs, all Apex

classes

RetryTool_User
End users needing retry

functionality
Execute retry operations, read settings

RetryTool_Debugger Troubleshooting support
Read-only access to logs and debug

info

Assignment Methods

Method 1: Setup UI (Recommended)

�. Navigate to Setup → Users

�. Click on user name

�. Click "Permission Set Assignments"

�. Click "Edit Assignments"

�. Add appropriate permission set (RetryTool_User for most users)

�. Save

Method 2: Apex Code (Bulk Assignment)

user-guide.md 11/3/2025

4 / 17

// Bulk assign RetryTool_User to active users
// Note: For large orgs, consider adding LIMIT or WHERE conditions to
reduce query size
List<User> activeUsers = [SELECT Id FROM User WHERE IsActive = true];
PermissionSet ps = [SELECT Id FROM PermissionSet WHERE Name =
'RetryTool_User' LIMIT 1];

List<PermissionSetAssignment> assignments = new
List<PermissionSetAssignment>();
for (User u : activeUsers) {
 assignments.add(new PermissionSetAssignment(
 AssigneeId = u.Id,
 PermissionSetId = ps.Id
));
}
insert assignments;

Method 3: Data Loader (Large Organizations)

�. Export user IDs who need access

�. Query PermissionSet ID: SELECT Id FROM PermissionSet WHERE Name =
'RetryTool_User' LIMIT 1

�. Create CSV with columns: AssigneeId, PermissionSetId

�. Use Data Loader to insert PermissionSetAssignment records

Configuration Settings

Basic Settings Fields

Developer Name: Unique identifier for this configuration

Max Retry: Number of retry attempts (1-5)

Waiting Time: Milliseconds between retries

Log Retention In Days: How long to keep log records (1-365)

Default Settings Fallback

⚠ Important: If you use a setting name that doesn't exist, RetryTool automatically applies default values:

Max Retry: 5

Waiting Time: 3000ms

Log Retention: 90 days

When this happens:

After sandbox refresh if settings records are not restored

When using wrong setting names in code

During testing with non-existent settings

Extra Retryable Errors Field

user-guide.md 11/3/2025

5 / 17

Add custom error keywords (pipe-separated) to extend retry behavior beyond the built-in patterns.

Format: KEYWORD1|KEYWORD2|KEYWORD3

Example Keywords (for illustration only):

TIMEOUT
OVERLOAD
RATE_LIMIT
NETWORK_ERROR
CALLOUT_EXCEPTION

Built-in Patterns (always active):

UNABLE_TO_LOCK_ROW
Multi-language record locking messages

Testing & Validation

Built-in Testing Tools

RetryTool includes comprehensive testing components accessible from any Retry Setting record:

1. LWC Testing Tab

Purpose: Test Lightning Web Component retry integration Test Scenarios:

Persistent Retry Error (continuous failures)

Non-Persistent Retry Error (intermittent failures)

Non-Retry Error (validation of non-retryable errors)

Testing Steps:

�. Open any Retry Setting record

�. Click LWC Tab

�. Select error type from dropdown

�. Click Test button

�. Monitor retry behavior and logging

Custom Handlers (optional - you can do whatever you want in these functions):

retryTool.handleErrorRetry(this, error, callback, settingName, {
 onRetry: (currentRetry, maxRetry) => {
 console.log(`Retry ${currentRetry} of ${maxRetry}`);
 // You can do whatever you want here - update UI, show toasts, call
methods, etc.
 },
 onMaxRetriesExceeded: () => {
 console.error("Maximum attempts reached");
 // You can do whatever you want here - show error messages, enable

user-guide.md 11/3/2025

6 / 17

buttons, etc.
 },
 onRetryNotAllowed: () => {
 console.error("Cannot retry this error");
 // You can do whatever you want here - handle non-retryable errors,
navigate, etc.
 },
 processName: "YourComponent",
 processAction: "yourMethod"
});

⚠ Important: Replace settingName with the exact Developer Name from your RetryTool_Setting__c

records. If the setting name doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime:

3000ms).

2. Aura Testing Tab

Purpose: Test Aura Component retry integration Similar scenarios as LWC testing Legacy support for

existing Aura implementations

Custom Handlers (optional - you can do whatever you want in these functions):

helper.retryToolHandleErrorRetry(cmp, error, callback, settingName, {
 onRetry: function (currentRetry, maxRetry) {
 console.log("Retry " + currentRetry + " of " + maxRetry);
 // You can do whatever you want here - update UI, show toasts, call
methods, etc.
 },
 onMaxRetriesExceeded: function () {
 console.error("Maximum attempts reached");
 // You can do whatever you want here - show error messages, enable
buttons, etc.
 },
 onRetryNotAllowed: function () {
 console.error("Cannot retry this error");
 // You can do whatever you want here - handle non-retryable errors,
navigate, etc.
 },
 processName: "YourAuraComponent",
 processAction: "yourFunction"
});

⚠ Important: Replace settingName with the exact Developer Name from your RetryTool_Setting__c

records. If the setting name doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime:

3000ms).

3. Screen Flow Testing Tab

user-guide.md 11/3/2025

7 / 17

Purpose: Test Flow DML fault path retry Prerequisites: Requires SObject Aggregator helper class - must

be customized for your specific SObjects and include test class (examples provided below)

Custom Error Screens (optional - you can customize error handling as you wish):

Use OverrideErrorScreen parameter to bypass default error messages

Create your own error screen with custom messages, buttons, and navigation

Add decision elements after RetryTool SubFlow to handle success/failure

You can do whatever you want - show custom messages, redirect users, log errors, etc.

4. Auto-Launched Flow Testing Tab

Purpose: Test background Flow retry operations Use Case: Batch processing, scheduled flows, platform

event handlers

Backend/Async Testing Examples:

Option 1: Flow DML Operation Action

Drag "Retry Tool DML Operation" action into auto-launched flow

Configure: DmlType (INSERT/UPDATE/DELETE), Records collection, RetryToolSetting name

Test with bulk records for async retry behavior

⚠ Important: Use the exact Developer Name from your RetryTool_Setting__c records for the

RetryToolSetting parameter.

Option 2: Direct Apex Integration

// Basic backend retry example
RetryToolDmlOperation.getInstance(records, 'BackendSetting').doUpdate();

// With process context for logging
RetryToolDmlOperation.getInstance(records, 'BatchProcessor')
 .setProcessName('DataMigrationBatch')
 .setProcessAction('updateRecords')
 .doInsert();

⚠ Important: Use the exact Developer Name from your RetryTool_Setting__c records. If the setting name

doesn't exist, RetryTool will use default values (MaxRetry: 5, WaitingTime: 3000ms).

Async Test Scenarios:

Batch Jobs: Test with 200+ records to trigger async processing

Platform Events: Test retry behavior in event subscribers

Scheduled Operations: Test retry in scheduled apex or flows

Creating Test Scenarios

Validation Rule Testing Method

user-guide.md 11/3/2025

8 / 17

Create temporary validation rule for testing:

�. Navigate to Object Manager → [Your Object] → Validation Rules

�. Create New Rule:

Rule Name: RetryTool_Test

Error Condition Formula: !1=1 & ISCHANGED() (Always run on update)

Error Message: UNABLE_TO_LOCK_ROW (or your custom error pattern)

�. Test retry functionality

�. Deactivate rule when testing complete

Custom Error Testing

Test custom error patterns:

�. Add custom pattern to Extra Retryable Errors: CUSTOM_TEST_ERROR
�. Create validation rule with error message: CUSTOM_TEST_ERROR: Testing custom pattern
�. Test retry behavior

�. Verify logging in Retry Logs tab

SObject Aggregator Helper Class

For Screen Flow integration, create this helper class customized for your SObjects:

Helper Class Example

public inherited sharing class RtSObjectAggregatorInvocable {
 @InvocableMethod(
 label='RetryTool - SObjectAggregatorInvocable'
 description='Invocable Method to aggregate sobjects for retry
operations'
 category='RetryTool'
)
 public static List<OutputParam> doAggregation(List<InputParam> inputs) {
 List<OutputParam> results = new List<OutputParam>();

 for (InputParam input : inputs) {
 OutputParam output = new OutputParam();
 List<SObject> records = new List<SObject>();

 // Add your specific SObject types here
 if (input.account != null)
 records.add(input.account);
 if (input.accountList != null)
 records.addAll(input.accountList);
 if (input.contact != null)
 records.add(input.contact);
 if (input.contactList != null)
 records.addAll(input.contactList);
 // Add more SObject types as needed for your org

 output.sobjectAggregation = JSON.serialize(records);

user-guide.md 11/3/2025

9 / 17

 results.add(output);
 }

 return results;
 }

 public class InputParam {
 @InvocableVariable
 public Account account;
 @InvocableVariable
 public List<Account> accountList;
 @InvocableVariable
 public Contact contact;
 @InvocableVariable
 public List<Contact> contactList;
 // Add more SObject types as needed for your org
 }

 public class OutputParam {
 @InvocableVariable
 public String sobjectAggregation;
 }
}

Test Class Code Snippet

@IsTest
public class RtSObjectAggregatorInvocableTest {
 @IsTest
 static void testDoAggregation() {
 // Test data setup
 Account testAccount = new Account(Name = 'Test Account');
 insert testAccount;

 Contact testContact = new Contact(
 FirstName = 'Test',
 LastName = 'Contact',
 AccountId = testAccount.Id
);
 insert testContact;

 // Prepare input parameters
 RtSObjectAggregatorInvocable.InputParam input = new
RtSObjectAggregatorInvocable.InputParam();
 input.account = testAccount;
 input.contact = testContact;
 input.accountList = new List<Account>{ testAccount };
 input.contactList = new List<Contact>{ testContact };

 // Execute the invocable method
 Test.startTest();

user-guide.md 11/3/2025

10 / 17

 List<RtSObjectAggregatorInvocable.OutputParam> results =
RtSObjectAggregatorInvocable.doAggregation(
 new List<RtSObjectAggregatorInvocable.InputParam>{ input }
);
 Test.stopTest();

 // Verify results
 System.assertEquals(1, results.size(), 'Should return one result');
 System.assertNotEquals(
 null,
 results[0].sobjectAggregation,
 'Should have JSON output'
);

 // Validate JSON serialization
 List<SObject> deserializedRecords = (List<SObject>) JSON.deserialize(
 results[0].sobjectAggregation,
 List<SObject>.class
);
 System.assertEquals(
 4,
 deserializedRecords.size(),
 'Should contain all 4 records'
);
 }

 @IsTest
 static void testEmptyInput() {
 // Test with empty input
 RtSObjectAggregatorInvocable.InputParam input = new
RtSObjectAggregatorInvocable.InputParam();

 Test.startTest();
 List<RtSObjectAggregatorInvocable.OutputParam> results =
RtSObjectAggregatorInvocable.doAggregation(
 new List<RtSObjectAggregatorInvocable.InputParam>{ input }
);
 Test.stopTest();

 // Verify empty result handling
 System.assertEquals(1, results.size(), 'Should return one result');
 System.assertNotEquals(
 null,
 results[0].sobjectAggregation,
 'Should have JSON output'
);
 }
}

Important Notes:

Modify the InputParam class to include your organization's specific SObject types

user-guide.md 11/3/2025

11 / 17

Update the aggregation logic to handle your custom objects

Ensure test class covers all your SObject types for proper deployment coverage

Sandbox Refresh Procedures

Problem Statement

When refreshing a sandbox from production:

RetryTool package remains installed

Configuration data (RetryTool_Setting__c records) is NOT automatically refreshed

Log data (RetryTool_Log__c records) is NOT carried over

Permission assignments may need to be recreated

⚠ Critical: If settings records are not restored, RetryTool will use default values (MaxRetry: 5,

WaitingTime: 3000ms, LogRetention: 90 days) for all operations until settings are recreated.

Post-Refresh Setup Checklist

Step 1: Verify Package Installation

�. Navigate to Setup → Installed Packages

�. Verify RetryTool package is listed as installed

�. Check package version matches expected version

Step 2: Recreate Configuration Data

Option A: Manual Recreation

�. Document settings from Production:

Navigate to RetryTool Settings tab in Production

Open each setting record and note down configuration values:

Developer Name

Max Retry

Waiting Time

Log Retention In Days

Extra Retryable Errors

�. Create settings in Sandbox:

Navigate to RetryTool Settings tab in Sandbox

Create new records matching production configuration

Verify Developer Names match exactly

Option B: Data Loader Method

�. Export from Production:

Use Data Loader to export RetryTool_Setting__c records

user-guide.md 11/3/2025

12 / 17

Include fields: DeveloperName__c, MaxRetry__c, WaitingTime__c,
LogRetentionInDays__c, ExtraRetryableErrors__c

�. Import to Sandbox:

Use Data Loader to import the exported records to Sandbox

Verify all records imported successfully

Step 3: Verify Scheduled Jobs

Check if log cleanup job is scheduled:

�. Navigate to Setup → Scheduled Jobs

�. Look for: "RetryTool Log Cleanup Schedule"

�. If missing, run post-install script manually:

// Execute in Developer Console
RetryToolLogCleanupSchedule.scheduleBatch(
 'RetryTool Log Cleanup Schedule',
 '0 0 23 L * ?' // Default cron: 11 PM on last day of month
);

Step 4: Reassign Permissions

Sandbox user permissions may not include RetryTool access:

�. Identify users who need RetryTool access

�. Assign permission sets using Setup UI or bulk methods (see Permission Management section)

�. Test functionality with assigned users

Step 5: Validation Testing

Run comprehensive testing to ensure functionality:

�. Use built-in testers (LWC, Aura, Flow tabs)

�. Verify error detection and retry behavior

�. Check logging functionality

�. Confirm settings are working correctly

Package Uninstallation

Pre-Uninstallation Requirements

⚠ CRITICAL: Remove all RetryTool references before uninstalling the package to avoid metadata

dependency errors.

Step 1: Identify Dependencies

user-guide.md 11/3/2025

13 / 17

Search for RetryTool references in your org using Setup UI:

�. Apex Classes:

Navigate to Setup → Apex Classes

Use Global Search to find "RetryTool" references

Review each class that contains RetryTool usage

�. Lightning Components:

Navigate to Setup → Lightning Components

Search for components containing "czywks_rt" namespace references

Check both LWC and Aura components

�. Flows:

Navigate to Setup → Flows

Search for flows containing "RetryTool" actions or elements

Review Flow definitions for RetryTool invocable actions

Step 2: Remove Code Dependencies

Lightning Web Components

Remove RetryTool imports and usage:

// REMOVE these lines:
import { retryTool } from "czywks_rt/retryTool";

// REMOVE retry handling code:
retryTool.handleErrorRetry(
 this, error, callback, settingName, processContext
);

// REPLACE with standard error handling:
.catch(error => {
 console.error('Error:', error);
 // Your standard error handling
});

Aura Components

Remove RetryTool interface and component:

<!-- REMOVE these lines: -->
implements="czywks_rt:RetryToolAura"
<czywks_rt:retryTool aura:id="retryToolCmpId" />

user-guide.md 11/3/2025

14 / 17

// REMOVE helper method calls:
helper.retryToolHandleErrorRetry(cmp, error, callback, settingName,
context);

// REPLACE with standard error handling

Flows

Remove RetryTool Invocable Actions:

�. Open each Flow that uses RetryTool

�. Remove these elements:

"RetryTool DML Operation" actions

"RetryTool SObject Aggregator" actions

Fault path connections to RetryTool subflows

�. Replace with standard DML operations

�. Save and activate updated flows

Apex Code

Remove RetryTool class usage:

// REMOVE these lines:
RetryToolDmlOperation.getInstance(records, 'SettingName').doInsert();

// REPLACE with standard DML:
try {
 insert records;
} catch (DmlException e) {
 // Your standard error handling
 throw e;
}

Step 3: Remove Custom Helper Classes

If you created custom helper classes (like SObject Aggregator):

�. Identify helper classes created for RetryTool integration (including test classes)

�. Remove or comment out RetryTool-specific functionality

�. Update for your specific SObject DML operations or remove entirely

�. Deploy changes to remove dependencies

Step 4: Validate Removal

Test your org to ensure all functionality works without RetryTool:

�. Run existing unit tests

user-guide.md 11/3/2025

15 / 17

�. Test critical business processes

�. Verify no compilation errors

�. Check Flow execution

Step 5: Uninstall Package

Only after removing all dependencies:

�. Navigate to Setup → Installed Packages

�. Find RetryTool package

�. Click "Uninstall"

�. Follow uninstallation wizard

�. Confirm removal

Step 6: Post-Uninstallation Cleanup

After successful uninstallation:

�. Remove permission set assignments (they'll be invalid)

�. Clean up any remaining references in documentation

�. Update deployment scripts if they referenced RetryTool

�. Notify team members of the removal

Troubleshooting

Common Issues

Issue: "RetryTool functionality not working"

Cause: License expiration in Production environment Solution:

Production Only: Check package license expiration - without valid license, all errors are treated as

non-retryable

Verify license is current and not expired

Issue: "Permission denied" or "Access not allowed"

Cause: Permission sets not assigned Solution: Verify user has RetryTool_User or RetryTool_Admin
permission set assigned

Issue: "Lightning Web Security error"

Cause: LWS not enabled for LWC integration Solution: Enable LWS in Setup → Session Settings →

Lightning Web Security

Issue: "Settings not found" or "Using default values"

Cause: Developer Name mismatch, missing settings, or wrong setting name in code Solution:

Verify setting exists with exact Developer Name used in code

user-guide.md 11/3/2025

16 / 17

Check if settings were restored after sandbox refresh

Remember: RetryTool uses default values (MaxRetry: 5, WaitingTime: 3000ms) when settings don't

exist

Issue: "Logs not being created"

Cause: Platform Event trigger not working or permission issues Solution: Check trigger is active and user

has permission to publish platform events

Issue: "Scheduled job not running"

Cause: Log cleanup job not scheduled or failed Solution: Check Scheduled Jobs and reschedule if

necessary

Issue: "Retries not working in Production but work in Sandbox"

Cause: Invalid package license in Production environment

Solution: Ensure valid RetryTool license in Production - without valid license, RetryTool will NOT retry

and will treat all UNABLE_TO_LOCK_ROW and other retryable errors as non-retryable

Debug Mode

Enable debug mode for troubleshooting:

�. Assign RetryTool_Debugger permission set

�. Check Debug Logs for RetryTool namespace activity

�. Monitor Platform Events for logging issues

�. Review Scheduled Job History for cleanup issues

Support Channels

Internal Documentation: RetryTool App → Welcome tab

Built-in Testing: Use testing tabs for validation

Salesforce Logs: Monitor debug logs for detailed error messages

Package Documentation: Review technical documentation in docs/ folder

Appendix

Default Settings Reference

{
 "DeveloperName__c": "RetryTool_Default",
 "MaxRetry__c": 5,
 "WaitingTime__c": 3000,
 "LogRetentionInDays__c": 90,
 "ExtraRetryableErrors__c": null
}

user-guide.md 11/3/2025

17 / 17

Permission Sets Summary

Object RetryTool_Admin RetryTool_User RetryTool_Debugger

RetryTool_Setting__c Full CRUD Read Read

RetryTool_Log__c Full CRUD Create/Read Read

RetryTool_Log_PE__e Create/Read Create/Read Read

Apex Classes All classes Essential classes Debug classes

Cron Expression Reference

Default log cleanup schedule: 0 0 23 L * ?

0 0 23: 11�00 PM

L: Last day of month

*: Every month

?: Any day of week

Custom schedule examples:

Daily at 2 AM: 0 0 2 * * ?
Weekly Sunday 3 AM: 0 0 3 ? * SUN
First day of month 1 AM: 0 0 1 1 * ?

